جداسازی متغیرها برای حل معادلات دیفرانسیل
از ویکیپدیا، دانشنامه آزاد
در ریاضیات ، جداسازی متغیرها (همچنین به عنوان روش فوریه شناخته می شود ) یکی از چندین روش برای حل معادلات دیفرانسیل معمولی و جزئی است که در آن جبر به فرد اجازه می دهد تا یک معادله را بازنویسی کند به طوری که هر یک از دو متغیر در سمت دیگری از معادله رخ دهد. .
معادله دیفرانسیل مرتبه اول تناسبی [1] را با جداسازی متغیرها حل کنید. [2]
معادله دیفرانسیل مرتبه اول خطی [3] را با جداسازی متغیرها حل کنید. [2]
معادلات دیفرانسیل معمولی (ODE) [ ویرایش ]
معادله دیفرانسیل برای مجهولاگر بتوان آن را به شکل نوشتار جدا کرد
جایی کهو
توابع داده می شود. این شاید وقتی با استفاده از نوشته می شود شفاف تر باشد
مانند:
بنابراین تا زمانی که h ( y ) ≠ 0 باشد، میتوانیم عبارات را مجدداً مرتب کنیم تا به دست آوریم:
،
که در آن دو متغیر x و y از هم جدا شده اند. یادداشت dx (و dy ) را می توان در یک سطح ساده، فقط به عنوان یک نماد راحت مشاهده کرد، که یک کمک یادگاری مفید برای کمک به دستکاری ها ارائه می دهد. تعریف رسمی dx به عنوان دیفرانسیل (بی نهایت کوچک) تا حدودی پیشرفته است.
نماد جایگزین [ ویرایش ]
کسانی که از نماد لایب نیتس خوششان نمی آید ممکن است ترجیح دهند این را به این صورت بنویسند
اما این امر نمی تواند کاملاً واضح باشد که چرا به آن "جداسازی متغیرها" می گویند. انتگرال هر دو طرف معادله با توجه به ، ما داریم
( A1 )
یا معادل آن،
به دلیل قانون جایگزینی برای انتگرال ها .
اگر بتوان دو انتگرال را ارزیابی کرد، میتوان راهحلی برای معادله دیفرانسیل پیدا کرد. توجه داشته باشید که این فرآیند به طور مؤثر به ما امکان می دهد مشتق را درمان کنیم ددبه عنوان کسری که قابل جدا شدن است. این به ما امکان می دهد معادلات دیفرانسیل قابل تفکیک را راحت تر حل کنیم، همانطور که در مثال زیر نشان داده شده است.
(توجه داشته باشید که ما نیازی به استفاده از دو ثابت انتگرال گیری در معادله ( A1 ) نداریم.
زیرا یک ثابت واحدمعادل است.)
مثال [ ویرایش ]
رشد جمعیت اغلب با معادله دیفرانسیل «لجستیک» مدلسازی میشود
جایی کهپجمعیت با توجه به زمان است
،
سرعت رشد است و
ظرفیت تحمل محیط است . جداسازی متغیرها در حال حاضر منجر به
که به راحتی با استفاده از کسرهای جزئی در سمت چپ تسلیم می شود
که در آن A ثابت انتگرال است. ما میتوانیم پیدا کنیم به لحاظ
در t=0. یادداشت برداری
ما گرفتیم
تعمیم ODEهای قابل تفکیک به مرتبه n [ ویرایش ]
دقیقاً مانند یک ODE مرتبه اول قابل تفکیک، می توان از یک ODE مرتبه دوم، سوم یا مرتبه n جداشدنی صحبت کرد. ODE مرتبه اول قابل جداسازی را در نظر بگیرید:
مشتق را می توان به روش زیر نوشت تا تاکید شود که یک عملگر است که روی تابع مجهول y کار می کند :
بنابراین، هنگامی که متغیرها را برای معادلات مرتبه اول جدا می کنیم، در واقع مخرج dx عملگر را به سمتی که متغیر x دارد ، منتقل می کنیم و d ( y ) در سمتی با متغیر y باقی می ماند . عملگر مشتق دوم، بر اساس قیاس، به صورت زیر تجزیه می شود:
عملگرهای مشتق سوم، چهارم و n ام به همین ترتیب تجزیه می شوند. بنابراین، بسیار شبیه به یک ODE قابل تفکیک مرتبه اول، قابل تقلیل به فرم است
یک ODE مرتبه دوم قابل تفکیک به فرم قابل تقلیل است
و یک ODE قابل تفکیک مرتبه n قابل تقلیل است
مثال [ ویرایش ]
معادله دیفرانسیل غیرخطی مرتبه دوم ساده را در نظر بگیرید:
این معادله فقط معادله ای از "y و 'y است ، به این معنی که به شکل کلی که در بالا توضیح داده شد قابل تقلیل است و بنابراین قابل تفکیک است. از آنجایی که این یک معادله قابل تفکیک مرتبه دوم است، همه متغیرهای x را در یک طرف و همه متغیرهای y را از طرف دیگر جمع آوری کنید تا به دست آورید:
حال، سمت راست را با توجه به x و سمت چپ را با توجه به y انتگرال کنید :
این می دهد
که ساده می کند:
اکنون این یک مسئله انتگرالی ساده است که پاسخ نهایی را می دهد:
معادلات دیفرانسیل جزئی[ ویرایش ]
همچنین ببینید: معادله دیفرانسیل جزئی قابل تفکیک
روش جداسازی متغیرها همچنین برای حل طیف وسیعی از معادلات دیفرانسیل جزئی خطی با شرایط مرزی و اولیه، مانند معادله گرما ، معادله موج ، معادله لاپلاس ، معادله هلمهولتز و معادله بی هارمونیک استفاده می شود .
روش تحلیلی جداسازی متغیرها برای حل معادلات دیفرانسیل جزئی نیز به یک روش محاسباتی تجزیه در ساختارهای ثابت تعمیم داده شده است که می تواند برای حل سیستم معادلات دیفرانسیل جزئی استفاده شود. [4]
مثال: حالت همگن [ ویرایش ]
معادله حرارت یک بعدی را در نظر بگیرید . معادله است
( 1 )
متغیر u نشان دهنده دما است. شرط مرزی همگن است، یعنی
( 2 )
بیایید سعی کنیم راه حلی پیدا کنیم که به طور یکسان صفر نباشد و شرایط مرزی را برآورده کند، اما دارای ویژگی زیر باشد: u حاصلضربی است که در آن وابستگی u به x ، t جدا می شود، یعنی:
( 3 )
جایگزین کردن u به معادله ( 1 ) و استفاده از قانون ضرب ،
( 4 )
از آنجایی که سمت راست فقط به x و سمت چپ فقط به t بستگی دارد ، هر دو طرف برابر مقداری ثابت - λ هستند . بدین ترتیب:
( 5 )
و
( 6 )
- λ در اینجا مقدار ویژه برای هر دو عملگر دیفرانسیل است و T ( t ) و X ( x ) توابع ویژه متناظر هستند .
اکنون نشان خواهیم داد که راه حل برای X ( x ) برای مقادیر λ ≤ 0 نمی تواند رخ دهد:
فرض کنید λ < 0. سپس اعداد حقیقی B , C وجود دارند به طوری که
از ( 2 ) دریافت می کنیم
( 7 )
و بنابراین B = 0 = C که نشان می دهد u به طور یکسان 0 است.
فرض کنید λ = 0. سپس اعداد حقیقی B , C وجود دارند به طوری که
از ( 7 ) به همان روشی که در 1 است نتیجه می گیریم که u دقیقاً 0 است.
بنابراین، باید اینطور باشد که λ > 0. سپس اعداد حقیقی A , B , C وجود داشته باشند به طوری که
،
و
.
از ( 7 ) C = 0 بدست می آوریم و برای مقداری عدد صحیح مثبت n ,
این معادله گرما را در حالت خاصی که وابستگی u شکل خاص ( 3 ) دارد حل می کند.
به طور کلی، مجموع راه حل های ( 1 ) که شرایط مرزی ( 2 ) را برآورده می کند، ( 1 ) و ( 3 ) را نیز برآورده می کند . از این رو می توان یک راه حل کامل به عنوان ارائه داد
که در آن D n ضرایبی هستند که با شرایط اولیه تعیین می شوند.
با توجه به شرایط اولیه
می توانیم دریافت کنیم
این بسط سری سینوسی f ( x ) است که قابل تحلیل فوریه است. ضرب هر دو طرف باو انتگرال بیش از [0، L ] نتیجه می دهد
این روش مستلزم آن است که X در اینجا دارای تابع خاص باشد، متعامد و کامل هستند . به طور کلی این توسط نظریه اشتورم-لیوویل تضمین شده است .
مثال: حالت غیر همگن [ ویرایش ]
فرض کنید معادله ناهمگن است،
( 8 )
با شرط مرزی مانند ( 2 ).
h ( x,t )، u ( x ، t ) و f ( x ) را به آن بزرگ کنید
( 9 )
( 10 )
( 11 )
که در آن h n ( t ) و b n را می توان با انتگرال محاسبه کرد، در حالی که u n ( t ) تعیین می شود.
( 9 ) و ( 10 ) را به ( 8 ) برگردانید و با در نظر گرفتن متعامد بودن توابع سینوسی بدست می آوریم
که دنباله ای از معادلات دیفرانسیل خطی هستند که می توانند به آسانی با تبدیل لاپلاس یا ضریب یکپارچه سازی حل شوند . بالاخره میتونیم بگیریم
اگر شرط مرزی ناهمگن باشد، بسط ( 9 ) و ( 10 ) دیگر معتبر نیست. باید تابع v را پیدا کرد که فقط شرط مرزی را برآورده کند و آن را از u کم کرد . سپس تابع uv شرایط مرزی همگن را برآورده می کند و با روش فوق قابل حل است.
مثال: مشتقات مخلوط [ ویرایش ]
برای برخی از معادلات شامل مشتقات مختلط، معادله به سادگی معادله حرارتی در مثال اول بالا از هم جدا نمی شود، اما با این وجود، جداسازی متغیرها ممکن است همچنان اعمال شود. معادله بی هارمونیک دو بعدی را در نظر بگیرید
به روش معمول پیش می رویم، ما به دنبال راه حل های فرم هستیم
و معادله را بدست می آوریم
نوشتن این معادله به شکل
گرفتن مشتق از این عبارت با توجه بهمی دهد
که به معنی
یا
و به همین ترتیب، گرفتن مشتق با توجه به
منجر به
و بنابراین
یا
، از این رو F ( x ) یا G ( y ) باید ثابت باشند، مثلاً -λ. این بیشتر نشان می دهد که یا-
یا-
ثابت هستند. با بازگشت به معادله X و Y ، دو حالت داریم
و
که هر کدام با در نظر گرفتن موارد جداگانه برای حل می شوندو با ذکر این نکته
.
مختصات منحنی [ ویرایش ]
در مختصات منحنی متعامد ، جداسازی متغیرها همچنان قابل استفاده است، اما در برخی جزئیات متفاوت از مختصات دکارتی است. به عنوان مثال، نظم یا شرایط دوره ای ممکن است مقادیر ویژه را به جای شرایط مرزی تعیین کند. برای مثال هارمونیک های کروی را ببینید .
قابلیت کاربرد [ ویرایش ]
معادلات دیفرانسیل جزئی [ ویرایش ]
برای بسیاری از PDE ها، مانند معادله موج، معادله هلمهولتز و معادله شرودینگر، قابل اجرا بودن جداسازی متغیرها نتیجه قضیه طیفی است . در برخی موارد، جداسازی متغیرها ممکن است امکان پذیر نباشد. جداسازی متغیرها ممکن است در برخی از سیستمهای مختصات امکانپذیر باشد، اما در برخی دیگر نه، [5] و اینکه کدام سیستم مختصات امکان جداسازی را میدهد به ویژگیهای تقارن معادله بستگی دارد. [6] در زیر یک طرح کلی از استدلال نشان می دهد که کاربرد روش را برای معادلات خطی خاص نشان می دهد، اگرچه روش دقیق ممکن است در موارد فردی متفاوت باشد (به عنوان مثال در معادله بی هارمونیک بالا).
یک مسئله مقدار مرزی اولیه برای یک تابع در نظر بگیریدبر
در دو متغیر:
جایی که یک عملگر دیفرانسیل با توجه به
واس
یک عملگر دیفرانسیل با توجه به
با داده های مرزی:
برا
برای
جایی که یک تابع شناخته شده است.
ما به دنبال راه حل های فرم هستیم . تقسیم PDE از طریق
می دهد
سمت راست فقط به و سمت چپ فقط رو
بنابراین هر دو باید برابر با یک ثابت باشند
، که دو معادله دیفرانسیل معمولی را به دست می دهد
که میتوانیم بهعنوان مشکلات مقدار ویژه برای عملگرها تشخیص دهیمواس
. اگر
یک اپراتور فشرده و خود الحاقی در فضا است
همراه با شرایط مرزی مربوطه، پس با قضیه طیفی مبنایی برای وجود دارد
متشکل از توابع ویژه برای
. اجازه دهید طیف از
بودن
و اجازه دهید
یک تابع ویژه با مقدار ویژه باشد
. سپس برای هر تابعی که در هر زمان
با توجه به مربع انتگرال پذیر است
، می توانیم این تابع را به صورت ترکیب خطی بنویسیم
. به طور خاص، ما راه حل را می دانیمتو
را می توان به صورت نوشت
برای برخی از عملکرد. در جداسازی متغیرها، این توابع با راه حل هایی به داده می شونداس=ک
از این رو، قضیه طیفی تضمین می کند که جداسازی متغیرها (در صورت امکان) همه راه حل ها را پیدا می کند.
برای بسیاری از اپراتورهای دیفرانسیل، مانند، می توانیم نشان دهیم که آنها با انتگرال با قطعات به خود متصل می شوند. در حالی که این عملگرها ممکن است فشرده نباشند، معکوس آنها (در صورت وجود) ممکن است مانند مورد معادله موج باشد، و این معکوس ها دارای توابع و مقادیر ویژه مشابه عملگر اصلی هستند (به استثنای صفر). [7]
ماتریس ها [ ویرایش ]
شکل ماتریسی جداسازی متغیرها مجموع کرونکر است .
به عنوان مثال ما لاپلاسین گسسته دوبعدی را روی یک شبکه معمولی در نظر می گیریم :
جایی کهو
لاپلاسی های گسسته 1 بعدی در جهت های x - و y - به ترتیب ومن
هویت اندازه های مناسب هستند. برای جزئیات به مقاله اصلی مجموع لاپلاسیان گسسته کرونکر مراجعه کنید .
نرم افزار [ ویرایش ]
برخی از برنامه های ریاضی قادر به جداسازی متغیرها هستند: Xcas [8] در میان دیگران.
همچنین ببینید [ ویرایش ]
- معادله دیفرانسیل جدایی ناپذیر
یادداشت ها [ ویرایش ]
- ^ "چگونه این معادله دیفرانسیل را با استفاده از جداسازی متغیرهای dy/dx= (y-2)/x حل می کنید؟" . Quora . بازیابی شده در 2022-01-22 .
- ^ a bپرش به بالا: "جداسازی متغیرها" . www.mathsisfun.com . بازیابی شده 2021-09-18 .
- ^ "چگونه این معادله دیفرانسیل را با استفاده از جداسازی متغیرهای dy/dx= (y-2)/x حل می کنید؟" . Quora . بازیابی شده در 2022-01-22 .
- ↑ Miroshnikov, Victor A. (15 دسامبر 2017). سیستم های موج هارمونیک: معادلات دیفرانسیل جزئی تجزیه هلمهولتز . شابک 9781618964069.
- ↑ جان رنز، اریک دبلیو وایستاین ، جداسازی متغیرها
- ↑ ویلارد میلر (1984) تقارن و جداسازی متغیرها ، انتشارات دانشگاه کمبریج
- ↑ دیوید بنسون (2007) موسیقی: یک پیشنهاد ریاضی ، انتشارات دانشگاه کمبریج، ضمیمه W
- ↑ «جبر نمادین و ریاضیات با Xcas» (PDF) .
منابع [ ویرایش ]
- پولیانین، آندری دی (2001-11-28). کتابچه راهنمای معادلات دیفرانسیل جزئی خطی برای مهندسان و دانشمندان . بوکا راتون، فلوریدا: چپمن و هال/CRC . شابک 1-58488-299-9.
- Myint-U، Tyn; دبنات، لوکنات (2007). معادلات دیفرانسیل جزئی خطی برای دانشمندان و مهندسان . بوستون، MA: Birkhäuser بوستون . doi : 10.1007/978-0-8176-4560-1 . شابک 978-0-8176-4393-5.
- تسچل، جرالد (2012). معادلات دیفرانسیل معمولی و سیستم های دینامیکی . تحصیلات تکمیلی در رشته ریاضی . جلد 140. Providence, RI: American Mathematical Society . شابک 978-0-8218-8328-0.
پیوندهای خارجی [ ویرایش ]
- "روش فوریه" ، دایره المعارف ریاضیات ، انتشارات EMS ، 2001 [1994]
- جان رنز، اریک دبلیو وایستاین ، " جداسازی متغیرها " (" معادله دیفرانسیل ") در MathWorld .
- روش های جداسازی تعمیم یافته و تابعی متغیرها در EqWorld: دنیای معادلات ریاضی
- نمونه هایی از جداسازی متغیرها برای حل PDE ها
- "توجیهی کوتاه برای جداسازی متغیرها"
دسته بندی ها :
- معادلات دیفرانسیل معمولی
- معادلات دیفرانسیل جزئی
https://en.wikipedia.org/wiki/Separation_of_variables