{\displaystyle f(x)=(1+x)^{\alpha }}{\displaystyle {\begin{aligned}f(x)&=\sum _{n=0}^{\infty }{\frac {f^{(n)}(0)}{n!}}x^{n}\\f(x)&=f(0)+f'(0)x+{\frac {1}{2}}f''(0)x^{2}+{\frac {1}{6}}f'''(0)x^{3}+{\frac {1}{24}}f^{(4)}(0)x^{4}+\cdots \\(1+x)^{\alpha }&=1+\alpha x+{\frac {1}{2}}\alpha (\alpha -1)x^{2}+{\frac {1}{6}}\alpha (\alpha -1)(\alpha -2)x^{3}+{\frac {1}{24}}\alpha (\alpha -1)(\alpha -2)(\alpha -3)x^{4}+\cdots \end{aligned}}}

{\displaystyle (1+x)^{\alpha }\approx 1+\alpha x.}

{\displaystyle {\sqrt {1+x}}\approx 1+x/2}

{\displaystyle {\frac {1}{\sqrt {a+b}}}-{\frac {1}{\sqrt {a-b}}}}

{\displaystyle {\begin{aligned}{\frac {1}{\sqrt {a+b}}}-{\frac {1}{\sqrt {a-b}}}&={\frac {1}{\sqrt {a}}}\left(\left(1+{\frac {b}{a}}\right)^{-1/2}-\left(1-{\frac {b}{a}}\right)^{-1/2}\right)\\&\approx {\frac {1}{\sqrt {a}}}\left(\left(1+\left(-{\frac {1}{2}}\right){\frac {b}{a}}\right)-\left(1-\left(-{\frac {1}{2}}\right){\frac {b}{a}}\right)\right)\\&\approx {\frac {1}{\sqrt {a}}}\left(1-{\frac {b}{2a}}-1-{\frac {b}{2a}}\right)\\&\approx -{\frac {b}{a{\sqrt {a}}}}\end{aligned}}}

{\displaystyle (1+x)^{\alpha }\approx 1+\alpha x+(\alpha /2)(\alpha -1)x^{2}}

{\displaystyle {\sqrt {1+x}}\approx 1+x/2-x^{2}/8.}

{\displaystyle {\begin{aligned}(1+\epsilon )^{n}-(1-\epsilon )^{-n}&\approx (1+n\epsilon )-(1-(-n)\epsilon )\\&\approx (1+n\epsilon )-(1+n\epsilon )\\&\approx 0.\end{aligned}}}

{\displaystyle {\begin{aligned}(1+\epsilon )^{n}-(1-\epsilon )^{-n}&\approx \left(1+n\epsilon +{\frac {1}{2}}n(n-1)\epsilon ^{2}\right)-\left(1+(-n)(-\epsilon )+{\frac {1}{2}}(-n)(-n-1)(-\epsilon )^{2}\right)\\&\approx \left(1+n\epsilon +{\frac {1}{2}}n(n-1)\epsilon ^{2}\right)-\left(1+n\epsilon +{\frac {1}{2}}n(n+1)\epsilon ^{2}\right)\\&\approx {\frac {1}{2}}n(n-1)\epsilon ^{2}-{\frac {1}{2}}n(n+1)\epsilon ^{2}\\&\approx {\frac {1}{2}}n\epsilon ^{2}((n-1)-(n+1))\\&\approx -n\epsilon ^{2}\end{aligned}}}

https://en.wikipedia.org/wiki/Binomial_approximation