x = (x1, x2, ..., xn)

{\displaystyle \left\|x\right\|_{2}=\left({x_{1}}^{2}+{x_{2}}^{2}+\dotsb +{x_{n}}^{2}\right)^{1/2}.}

{\displaystyle \left\|x\right\|_{p}=\left(|x_{1}|^{p}+|x_{2}|^{p}+\dotsb +|x_{n}|^{p}\right)^{1/p}.}

{\displaystyle \left\|x\right\|_{\infty }=\max \left\{|x_{1}|,|x_{2}|,\dotsc ,|x_{n}|\right\}}

{\displaystyle \left\|x\right\|_{2}\leq \left\|x\right\|_{1}.}

{\displaystyle \left\|x\right\|_{1}\leq {\sqrt {n}}\left\|x\right\|_{2}.}

{\displaystyle \left\|x\right\|_{p}\leq \left\|x\right\|_{r}\leq n^{(1/r-1/p)}\left\|x\right\|_{p}.}

d_{p}(x,y)=\sum _{i=1}^{n}|x_{i}-y_{i}|^{p}

(Rndp) = np

(x_{n})\mapsto \sum _{n}2^{-n}{\frac {|x_{n}|}{1+|x_{n}|}},

{\displaystyle {\begin{aligned}&(x_{1},x_{2},\ldots ,x_{n},x_{n+1},\ldots )+(y_{1},y_{2},\ldots ,y_{n},y_{n+1},\ldots )\\={}&(x_{1}+y_{1},x_{2}+y_{2},\ldots ,x_{n}+y_{n},x_{n+1}+y_{n+1},\ldots ),\\[6pt]&\lambda \cdot \left(x_{1},x_{2},\ldots ,x_{n},x_{n+1},\ldots \right)\\={}&(\lambda x_{1},\lambda x_{2},\ldots ,\lambda x_{n},\lambda x_{n+1},\ldots ).\end{aligned}}}

{\displaystyle \left\|x\right\|_{p}=\left(|x_{1}|^{p}+|x_{2}|^{p}+\cdots +|x_{n}|^{p}+|x_{n+1}|^{p}+\cdots \right)^{1/p}}

{\displaystyle \left\|x\right\|_{\infty }=\sup(|x_{1}|,|x_{2}|,\dotsc ,|x_{n}|,|x_{n+1}|,\ldots )}

{\displaystyle \left\|x\right\|_{\infty }=\lim _{p\to \infty }\left\|x\right\|_{p}}

{\displaystyle \ell ^{p}(I)=\left\{(x_{i})_{i\in I}\in \mathbb {K} ^{I};\,\sum _{i\in I}|x_{i}|^{p}<\infty \right\}\,}

{\displaystyle \left\|x\right\|_{p}=\left(\sum _{i\in I}|x_{i}|^{p}\right)^{1/p}}

{\displaystyle \|f\|_{p}\equiv \left(\int _{S}|f|^{p}\;\mathrm {d} \mu \right)^{1/p}<\infty }

{\begin{aligned}(f+g)(x)&=f(x)+g(x),\\(\lambda f)(x)&=\lambda f(x)\end{aligned}}

{\displaystyle \|f+g\|_{p}^{p}\leq 2^{p-1}\left(\|f\|_{p}^{p}+\|g\|_{p}^{p}\right).}

{\displaystyle \|f\|_{\infty }\equiv \inf\{C\geq 0:|f(x)|\leq C{\text{ for almost every }}x\}.}

{\displaystyle \|f\|_{\infty }=\lim _{p\to \infty }\|f\|_{p}.}

 

{\displaystyle {\mathcal {N}}\equiv \{f:f=0\ \mu {\text{-almost everywhere}}\}=\ker(\|\cdot \|_{p})\qquad \forall \ 1\leq p<\infty }

L^{p}(S,\mu )\equiv {\mathcal {L}}^{p}(S,\mu )/{\mathcal {N}}

\langle f,g\rangle =\int _{S}f(x){\overline {g(x)}}\,\mathrm {d} \mu (x)f\mapsto \kappa _{p}(g)(f)=\int fg\,\mathrm {d} \mu \ \

j_{p}:L^{p}(\mu ){\overset {\kappa _{q}}{\longrightarrow }}L^{q}(\mu )^{*}{\overset {\left(\kappa _{p}^{-1}\right)^{*}}{\longrightarrow }}L^{p}(\mu )^{**}

 

{\displaystyle \ \|\mathbf {1} f^{p}\|_{1}\leq \|\mathbf {1} \|_{q/(q-p)}\|f^{p}\|_{q/p}}

leading to

{\displaystyle \ \|f\|_{p}\leq \mu (S)^{1/p-1/q}\|f\|_{q}}.

 

{\displaystyle \|I\|_{q,p}=\mu (S)^{1/p-1/q}}

 1 ≤ p < ∞.

 (S, Σ, μ

f=\sum _{j=1}^{n}a_{j}\mathbf {1} _{A_{j}}

 Aj ∈ Σ {\mathbf {1} }_{A_{j}}A_{j}

F\subset A\subset U\subset V\quad {\text{and}}\quad \mu (U)-\mu (F)=\mu (U\setminus F)<\varepsilon

0 ≤ φ ≤ 1 on S that is 1 on F and 0 on S ∖ U, with

{\displaystyle \int _{S}|\mathbf {1} _{A}-\varphi |\,\mathrm {d} \mu <\varepsilon \ .}

\forall f\in L^{p}(\mathbf {R} ^{d}):\qquad \left\|\tau _{t}f-f\right\|_{p}\to 0,\quad {\text{ as }}\mathbf {R} ^{d}\ni t\to 0,

{\displaystyle (\tau _{t}f)(x)=f(x-t).}

Lp (0 < p < 1)[edit]

Lp (0 < p < 1)[edit]

 

{\displaystyle N_{p}(f)=\int _{S}|f|^{p}\,d\mu <\infty .}

As before, we may introduce the p-norm || f ||p = Np( f )1/p, but || · ||p does not satisfy the triangle inequality in this case, and defines only a quasi-norm. The inequality (a + b) p ≤ a p + b p, valid for ab ≥ 0 implies that (Rudin 1991, §1.47)

{\displaystyle N_{p}(f+g)\leq N_{p}(f)+N_{p}(g)}N_{p}(f+g)\leq N_{p}(f)+N_{p}(g)

and so the function

d_{p}(f,g)=N_{p}(f-g)=\|f-g\|_{p}^{p}

 

 

V_{\varepsilon }={\Bigl \{}f:\mu {\bigl (}\{x:|f(x)|>\varepsilon \}{\bigr )}<\varepsilon {\Bigr \}},\qquad \varepsilon >0

d(f,g)=\int _{S}\varphi {\bigl (}|f(x)-g(x)|{\bigr )}\,\mathrm {d} \mu (x)

 

 

W_{\varepsilon }=\left\{f:\lambda \left(\left\{x:|f(x)|>\varepsilon {\text{ and }}|x|<{\frac {1}{\varepsilon }}\right\}\right)<\varepsilon \right\}

 

Generalizations and extensions[edit]

Weak Lp[edit]

 

\lambda _{f}(t)=\mu \left\{x\in S:|f(x)|>t\right\}

 

\lambda _{f}(t)\leq {\frac {\|f\|_{p}^{p}}{t^{p}}}

 

\lambda _{f}(t)\leq {\frac {C^{p}}{t^{p}}}

 

 

\|f\|_{p,w}\leq \|f\|_{p}

 

 

{\displaystyle \|f\|_{L^{p}}^{p}=\int |f(x)|^{p}d\mu (x)\geq \int _{\{|f(x)|>t\}}t^{p}+\int _{\{|f(x)|\leq t\}}|f|^{p}\geq t^{p}\mu (\{|f|>t\})},

 

{\displaystyle \|f\|_{L^{p}}\geq \sup _{t>0}t\;\mu (\{|f|>t\})^{1/p}=\|f\|_{L^{p,w}}.}

 

For any 0 < r < p the expression

{\displaystyle |||f|||_{L^{p,\infty }}=\sup _{0<\mu (E)<\infty }\mu (E)^{-1/r+1/p}\left(\int _{E}|f|^{r}\,d\mu \right)^{1/r}}

 

{\displaystyle \nu (A)\equiv \int _{A}w(x)\,\mathrm {d} \mu (x),\qquad A\in \Sigma ,}

 

{\displaystyle \|u\|_{L^{p}(S,w\,\mathrm {d} \mu )}\equiv \left(\int _{S}w(x)|u(x)|^{p}\,\mathrm {d} \mu (x)\right)^{1/p}}

{\displaystyle L_{\mu }^{p}\left(X,\Sigma ,\mu \right)\otimes _{\pi }E}{\displaystyle L_{\mu }^{p}\left(X,\Sigma ,\mu \right)\otimes _{\epsilon }E}

منبع: https://en.wikipedia.org/wiki/Lp_space