توسط علی رضا نقش نیلچی
| پنجشنبه پنجم بهمن ۱۴۰۲ | 15:11
نقاط در فصا[ ویرایش ]
برای یک n- گون ساده با شعاع R و فواصل d i از یک نقطه دلخواه در صفحه تا رئوس، داریم [2]
برای قدرت های بالاتر از فواصلاز یک نقطه دلخواه در صفحه تا رئوس یک منظم-گون، اگر
،
سپس [3]
،
و
،
جایی کهیک عدد صحیح مثبت کمتر از است.
اگرفاصله یک نقطه دلخواه در صفحه تا مرکز یک منظم است-گون با محیط اطراف، سپس [3]
،
جایی که= 1، 2،.....
نکات داخلی [ ویرایش ]
برای یک n -gon منتظم، مجموع فواصل عمود بر هر نقطه داخلی به n ضلع برابر n برابر آپوتم است [4] : p. 72 (آواثم فاصله از مرکز به هر طرف). این یک تعمیم قضیه ویویانی برای مورد n = 3 است. [5] [6]
Circumradius [ ویرایش ]
پنج ضلعی منتظم ( n = 5) با ضلع s ، دور شعاع R و آپوتم a
نمودارهای سمت , s ; آپوتم , a ; و مساحت ، A از چند ضلعی های منتظم از n ضلع و شعاع 1، با قاعده , b مستطیلی با مساحت یکسان . خط سبز حالت n = 6 را نشان می دهد .
شعاع محیطی R از مرکز یک چند ضلعی منتظم به یکی از رئوس مربوط به طول ضلع s یا به آپوتم a با است.
برای چند ضلعی های قابل ساخت ، عبارات جبری برای این روابط وجود دارد. چندضلعی دومرکزی#چندضلعی های منتظم را ببینید .
مجموع عمودهای راس یک n -gon منتظم به هر خط مماس بر دایره محیطی برابر با n برابر شعاع محیطی است. [4] : ص. 73
مجموع مجذور فواصل از رئوس یک n - ضلعی منتظم تا هر نقطه از دایره دایره آن برابر است با 2 nR 2 که در آن R شعاع محیطی است. [4] : ص73
مجموع مجذور فواصل از وسط اضلاع یک n - ضلعی منتظم تا هر نقطه از دایره دایره 2 nR 2 - است.1/4ns 2 که s طول ضلع و R شعاع محیطی است. [4] : ص. 73
اگردفواصل از رئوس یک منظم هستند-به هر نقطه از دایره آن بروید، سپس [3]
.
کالبد شکافی [ ویرایش ]
کوکستر بیان می کند که هر زونوگون (یک ضلع 2 متری که اضلاع مقابل آن موازی و با طول مساوی هستند) را می توان به دو قسمت تقسیم کرد.(�2)یا1/2متوازی الاضلاع m ( m - 1) . این کاشیکاریها بهعنوان زیرمجموعهای از رئوس، لبهها و وجهها در برآمدگیهای متعامد m -cubes قرار دارند. [7] به ویژه، این برای هر چندضلعی منتظم با تعداد ضلع زوج صادق است، در این صورت متوازی الاضلاع همه لوزی هستند. لیست OEIS : A006245 تعداد راه حل ها را برای چند ضلعی های کوچکتر نشان می دهد.
کالبد شکافی نمونه برای چند ضلعی های منظم منتخب یک طرفه
2 متر6810121416182024304050
تصویر
لوزی ها3610152128364566105190300
منطقه [ ویرایش ]
مساحت A یک چندضلعی منتظم n ضلعی محدب دارای ضلع s ، شعاع محیطی R ، آپوتم a و محیط p با [8] به دست می آید [9]
برای چند ضلعی های منظم با ضلع s = 1، محیطی R = 1، یا آپوتم a = 1، جدول زیر را ایجاد می کند: [10] ( از آنجا کهمانند، منطقه زمانی کهتمایل داردمانندبزرگ می شود.)
تعداد
اضلاعمساحتی که ضلع s =1 باشدمساحتی که دور شعاع R = 1 باشدمساحت زمانی که آپوتم a = 1 است
دقیقتقریبدقیقتقریبنسبت به ناحیه
دایره دور دقیقتقریبنسبت به ناحیه
دایره ای
n
3340.4330127023341.2990381050.4134966714335.1961524241.653986686
411.00000000022.0000000000.636619772244.0000000001.273239544
51425+1051.7204774015412(5+5)2.3776412910.756826728855-253.6327126401.156328347
63322.5980762113322.5980762110.8269933428233.4641016161.102657791
7 3.633912444 2.7364101890.8710264157 3.3710223331.073029735
82+224.828427125222.8284271250.90031631608(2-1)3.3137085001.054786175
9 6.181824194 2.8925442440.9207254290 3.2757321091.042697914
10525+257.6942088435212(5-5)2.9389262620.9354892840225-1053.2491969631.034251515
11 9.365639907 2.9735244960.9465022440 3.2298914231.028106371
126+3311.1961524233.0000000000.954929658612(2-3)3.2153903091.023490523
13 13.18576833 3.0207006170.9615188694 3.2042122201.019932427
14 15.33450194 3.0371861750.9667663859 3.1954086421.017130161
15[11]17.64236291[12]3.0505248220.9710122088[13]3.1883484261.014882824
16[14]20.1093579742-23.0614674600.9744953584[15]3.1825978781.013052368
17 22.73549190 3.0705541630.9773877456 3.1778507521.011541311
18 25.52076819 3.0781812900.9798155361 3.1738856531.010279181
19 28.46518943 3.0846449580.9818729854 3.1705392381.009213984
20[16]31.56875757[17]3.0901699440.9836316430[18]3.1676888061.008306663
100 795.5128988 3.1395259770.9993421565 3.1426266051.000329117
1000 79577.20975 3.1415719830.9999934200 3.1416029891.000003290
10000 7957746.893 3.1415924480.9999999345 3.1415927571.000000033
1,000,000 79577471545 3.1415926541.000000000 3.1415926541.000000000
مقایسه اندازه چند ضلعی های منظم با طول لبه یکسان، از سه تا شصت ضلع. با نزدیک شدن تعداد اضلاع به بی نهایت، اندازه بدون محدودیت افزایش می یابد.
از بین n - گونهای با محیط معین، گونهای با بیشترین مساحت منظم است. [19]
در این وبلاگ به ریاضیات و کاربردهای آن و تحقیقات در آنها پرداخته می شود. مطالب در این وبلاگ ترجمه سطحی و اولیه است و کامل نیست.در صورتی سوال یا نظری در زمینه ریاضیات دارید مطرح نمایید .در صورت امکان به آن می پردازم. من دوست دارم برای یافتن پاسخ به سوالات و حل پروژه های علمی با دیگران همکاری نمایم.در صورتی که شما هم بامن هم عقیده هستید با من تماس بگیرید.